Графен может решить пять крупнейших проблем мира

Выбросы углерода

Тринадцатая цель в списке SDG посвящена принятию «неотложных мер по борьбе с изменением климата и его последствиями».

Конечно, одним из главных виновников изменения климата является чрезмерное количество углекислого газа, выделяющегося в атмосферу. Графеновые мембраны могли бы улавливать эти выбросы.

Ученые из Университета Южной Каролины и Университета Ханьянг в Южной Корее самостоятельно разработали фильтры на основе графена, которые могут использоваться для отделения нежелательных газов от промышленных, коммерческих и жилых выбросов. Генри Фоли из Университета Миссури утверждал, что эти открытия стали «чем-то вроде святого Грааля».

С их помощью мир мог бы остановить рост CO2 в атмосфере, особенно сейчас, когда мы преодолели важный показатель в 400 частей на миллион.

Графеновый бум

За 7 лет после вручения премии вышло больше 130 тыс. научных работ, посвященных графену и его свойствам. Доля таких исследований среди всех остальных выросла с 0,2% в 2010 году до 1% в 2016-м.

Профессор Катарина Паукнер в Будапеште, 2016 год

Исследователь Прабхурадж Балакришнан в Лондоне, 2017 год

Доктор Хан Лин в Мельбурне, 2019 год

В научном сообществе тестирование свойств графена стало почти мемом. Доходит до того, что в графен добавляют куриный помет, чтобы проверить, как это отразится на его качествах .

Всего в мире зарегистрировано более 50 тыс. патентных заявок с упоминанием графена. Больше половины из них принадлежит Китаю, следом идут Южная Корея, США, Япония и Тайвань.

В Китае исследованиями занимаются государственные вузы. В 2013 году здесь создали Инновационный альянс графеновой промышленности, который пророчит Китаю в этой сфере долю в 80% от общемировой.

В остальных странах в графен активно вкладываются коммерческие компании. В Евросоюзе за это отвечает проект Graphene Flagship с инвестициями в €1 млрд . В США — Национальная графеновая ассоциация, в консультативный совет которой входят представители Apple, IBM и Cisco.

В графене заинтересованы гиганты аэрокосмической отрасли: Boeing, Lockheed Martin, Airbus и Thales. Они рассчитывают, что новые материалы позволят им в разы снизить расход топлива — как композиты, которые экономят до 30% горючего в Boeing 787. Электронные корпорации включились в графеновую гонку в надежде, что это принесет им лидерство на рынке смартфонов и аксессуаров к ним.

Среди них — Samsung : компания уже скупила десятки патентов, которых хватит на целую линейку продуктов с графеном. В частности, она представила новый тип аккумуляторов, которые можно будет заряжать за рекордные 12 минут. Такие появятся в новых смартфонах бренда не позднее 2021-го года. Их главный конкурент — Apple — запатентовала акустические диафрагмы с графеном для использования в устройствах следующих поколений. И это, судя по всему — только начало.

В России тоже занимаются изучением графена и даже патентуют электронные устройства на его основе — на базе в Центра фотоники и двумерных материалов МФТИ. Двое ученых-выпускников этого вуза — гендиректор ведущего производителя Graphene 3D Lab Inc. Елена Полякова и профессор Свободного университета Берлина Кирилл Болотин — входят в ту самую американскую ассоциацию.

Энергия

Седьмая задача — обеспечение доступа к недорогостоящим, надежным, устойчивым и современным источникам энергии для всех. Из-за легкости, проводимости и прочности на растяжение графен может сделать экологичную энергию более эффективной и дешевой.

Например, графеновые композиты можно было бы использовать для создания более универсальных солнечных панелей. Исследователи из Массачусетского технологического института говорят, что «при помощи графена возможно сделать гибкие, недорогие и прозрачные солнечные элементы, которые могут превратить практически любую поверхность в источник электроэнергии». Благодаря графеновым композитам также возможно создание больших и легких ветровых турбин.

Кроме того, графен уже используется для улучшения традиционных литий-ионных батарей, которые обычно используются в бытовой электронике. Проводятся также исследования графеновых аэрогелей для хранения энергии и суперконденсаторов. Все это понадобится для крупномасштабного хранения чистой энергии.

За следующие десять лет графен почти наверняка найдет множество применений в реальном мире и не только поможет ООН и ее участникам достичь поставленных целей SDG, но и улучшит все в нашем мире, от сенсорных экранов до МРТ-аппаратов и транзисторов.

Крупнейшие открытия в области материаловедения

Новые инструменты помогли создать метаматериалы, используемые в композитах из углеродного волокна для разработки более легких транспортных средств, усовершенствованные сплавы — для более долговечных реактивных двигателей и биоматериалы — для замены суставов человека.

Мы также видим прорывы в области сохранения энергии и квантовых вычислений. В робототехнике новые материалы помогают нам выращивать искусственные мышцы, необходимые для создания гуманоидных роботов.

Литий-ионные аккумуляторы

Такого рода аккумулятор, который сегодня питает все — от наших смартфонов до автономных автомобилей — был впервые разработан в 1970-х годах, но не мог полноценно выйти на рынок вплоть до 1990-х годов. Производство достаточного их количества для удовлетворения спроса было постоянной проблемой. Но компания Tesla шагнула навстречу этому вызову: одна из гигафабрик компании в штате Невада производит в год накопители энергии мощностью в 20 ГВт — впервые литий-ионные аккумуляторы производятся в таком масштабе.

Другие компании также быстро двигаются к этой цели: Renault строит домашний накопитель энергии на основе своих батарей Zoe, аккумуляторы BMW 500 i3 интегрируются в национальную энергетическую сеть Великобритании, а Toyota, Nissan и Audi объявили о собственных пилотных проектах.

Зеленая экономика

Десять самых доступных и комфортных электромобилей. Фотогалерея

Американский предприниматель Илон Маск предсказывает, что сотня подобных гигафабрик смогли бы удовлетворить энергетические потребности всего земного шара.

Графен

Полученный из того же графита, что и обычные карандаши, графен представляет собой лист углерода толщиной всего в один атом. Он почти невесом, но в 200 раз прочнее стали. Этот суперматериал проводит электричество и рассеивает тепло быстрее, чем любое другое известное вещество.

Графен позволяет использовать сенсоры и высокопроизводительные транзисторы. Во многих гибких экранах устройств, 3D-принтерах, солнечных панелях и защитной ткани используется графен. Поскольку производственные затраты снижаются, этот материал способен ускорить прогресс во всех сферах.

Индустрия 4.0

Что такое графен и как он изменит нашу жизнь?

Перовскит

Сейчас «эффективность преобразования» солнечной панели (сколько «захваченного» солнечного света может быть превращено в электричество) составляет в среднем 16%. Светочувствительный минерал перовскит способен довести это значение до 66%, что удвоит возможности кремниевых панелей.

Технологии работы с перовскитом широко доступны и недороги. Что означают все эти факторы в совокупности? Доступная солнечная энергия для всех.

Материалы нано-мира

Нанотехнологии — это та «точка» материаловедения, где манипуляции становятся наноформатными: это в миллион раз меньше, чем размер муравья, в 8 тыс. раз меньше, чем эритроцит, и в 2,5 раза меньше, чем нить ДНК. Наноботы — это машины, которые могут самовоспроизводиться и разобрать на части любой материал, атом за атомом, и использовать это «сырье» для создания чего угодно.

Экономика инноваций

Индивидуальный дизайн: зачем нужна генная инженерия

Прогресс в нано-мире был удивительно быстрым, и сейчас на рынке появилось множество нанопродуктов. Не хочется складывать одежду? Наноразмерные вплетения в ткани делают их немнущимися и стойкими к повреждениям. Не любите мыть окна? Не проблема! Нанопленки могут сделать окна самоочищающимися, «антибликовыми» и даже способными проводить электричество. Хотите пустить солнечную энергию в свой дом? Есть нанопокрытия, которые улавливают энергию солнца.

Наноматериалы позволяют делать более легкие автомобили, самолеты, бейсбольные биты, шлемы, велосипеды, электроинструменты — список можно продолжать долго.

Исследователи из Гарварда создали наноразмерный 3D-принтер, способный производить миниатюрные батареи шириной менее одного миллиметра. Ученые также используют нанотехнологии для создания умных контактных линз с разрешением в шесть раз большим, чем у современных смартфонов. Биоинженер из Гарварда недавно сохранил 700 терабайт данных в одном грамме ДНК.

Индустрия 4.0

Нанофлешка: как хранить фильмы и фотографии в ДНК человека

Дальше — больше. Наноботы для транспортировки лекарств были бы особенно полезны в борьбе с раком. На экологическом фронте ученые могут извлекать углекислый газ из атмосферы и превращать его в сверхпрочные углеродные нановолокна для использования в производстве.

Если мы сможем масштабировать технологию в солнечной энергии, то система размером в 10% пустыни Сахара сможет снизить содержание CO2 в атмосфере до доиндустриального уровня примерно за десятилетие.

Миф о токсичности графена

В современной биоэлектронике используется высококачественный графен, выращенный методом химического осаждения из газовой фазы. Он представляет собой однородный слой атомов на очень большой площади — до 100 на 100 миллиметров. Потом разработчики уменьшают его до порядка 100 на 100 микрометров и закрепляют на подложке. В этом случае он не может проявить токсичность, потому что не плавает среди клеток. Более того, есть несколько работ, в рамках которых ученые выращивали клетки поверх графена на подложке и на обычном стекле и сравнивали результаты. Выяснилось, что клетки растут гораздо активнее именно на графене. Графен — биосовместимый материал, ведь это обычный углерод.

Невидимый и прочный

Графен состоит из плотно соединённых атомов углерода, выстроенных в решётку наподобие пчелиных сот толщиной всего в один атом. Это делает его самым тонким материалом в мире, невидимым невооружённым глазом, но при этом очень прочным и эластичным. Впервые графен выделили в 2004 году российские учёные Андрей Гейм и Константин Новосёлов, которые работали тогда в Манчестерском университете. Шесть лет спустя опыты физиков были удостоены Нобелевской премии.

С тех пор исследователи со всех уголков планеты пытались найти всё новые способы применения и, что интересно, получения графена. Ведь одним из главных факторов, мешающих наладить масштабное производство этого чудо-материала, была дороговизна «оригинального» варианта получения графена с помощью сложного процесса разложения графита. Очень быстро графен научились добывать при помощи лазера, используя в качестве сырья обычную древесину, и даже путём взрыва углеродсодержащего материала.

Пока одни учёные соревнуются, чей метод получения графена проще и дешевле, другие находят ему самое необычное применение.

Где можно применять графен в будущем?

Есть и еще одно свойство графена: он биосовместим, то есть взаимодействует с живыми клетками. Ученые обещают, что материал поможет диагностировать и лечить рак . Это делают с помощью чипа с графеном, который придает повышенную чувствительность. На поверхность чипа высаживают раковые клетки и тестируют на них различные лекарства.

Такие чипы можно использовать и для тестирования других лекарств, а также — определения биомаркеров: иммуноглобулина, ДНК, нейрональных биорецепторов.

Из графена также планируют делать дешевые солнечные батареи, опресняющие устройства для морской воды, гибкие дисплеи, сверхпрочные бронежилеты, сверхчувствительные микропроцессоры, элементы для беспилотников и космических ракет, телефоны с бесконечной зарядкой и умную одежду.

Для России самым перспективным применением графена могут стать нефте- и газодобыча. На основе графена делают жидкости, которые позволят управлять толщиной и свойствами фильтрационной корки буровых растворов. А еще можно делать полимерные трубы и покрытия для нефте- и газопроводов с применением графена.

Экономика инноваций

Единорог из трубки: фоторепортаж из уникального сибирского стартапа

Нейродевайсы: считывание активности нейронов

В перспективе эту технологию можно применять и для людей. Нейродевайсы могут облегчить жизнь людям с болезнью Паркинсона, которые часто сталкиваются с тремором, непроизвольным сокращением мышц. Чтобы регулировать судороги, пациентам имплантируются мультиэлектродные массивы, которые глубоко стимулируют головной мозг электрическими импульсами. При наступлении судорог пациент нажимает кнопку на мини-девайсе, и через электрод поступает несколько сигналов в часть мозга, которая отвечает за заболевание.

Проблема стандартных мультиэлектродных массивов в том, что они сделаны из твердого кремния. Имплантировать кремниевое устройство в мозг — все равно что пытаться поместить гвоздь в мягкую конфету. Организм реагирует на кремниевую электронику как на инородное тело. Вокруг таких устройств формируются глиальные клетки, с помощью которых мозг пытается защитить нейроны и вытолкнуть чужеродный предмет. Поэтому стимуляторы меняют каждые 2–5 лет. На основе графена можно разрабатывать совсем другие девайсы — гибкие, тонкие и мягкие. Клетки апробируют такое устройство, защитная реакция не запустится. Тогда девайсы можно будет менять намного реже — раз в несколько десятков лет.

Облегчение болезни Паркинсона — далеко не единственная область применения графеновых нейродевайсов. Они будут полезны исследователям, работающим с любыми нейродегенеративными заболеваниями. Большинство из них до сих пор недостаточно изучены: ученым не хватает данных о том, как работает человеческий мозг. Сейчас для таких наблюдений тоже используют кремниевые устройства, так что более эффективные графеновые девайсы заменят их и в исследовательских задачах.

Предусиление сигнала: проблема передачи данных на расстоянии

Один из недостатков графена для электроники — это отсутствие запрещенной зоны — такой области значений, которыми не могут обладать электроны в веществе. В графене у электронов произвольная энергия. Он слишком хорошо проводит ток, поэтому на его основе нельзя сделать классический транзистор с положениями 1 и 0, наличием и отсутствием тока. Графеновый транзистор никогда не закрывается: он просто проводит ток либо хорошо, либо плохо. Из-за этого он не выполняет логические операции, с которыми справляются классические кремниевые транзисторы. Для современной графеновой электроники это значительная проблема.

Биоэлектрические потенциалы, создаваемые нейрональными клетками вокруг мембраны, довольно слабые: от десяти до двухсот микровольт в зависимости от клетки, ширины щели между ней и графеном и прочих факторов. Передавать их на расстояние нескольких метров без потерь практически невозможно: электромагнитные волны от других устройств заглушают слабый сигнал. На основе графена нельзя построить транзисторы, которые будут выполнять логические операции для усиления сигнала. Оптимальным решением будет использовать графен для измерения и создавать дополнительные транзисторы из других 2D-материалов. Они позволят предусилить сигнал от 10 микровольт до 10 милливольт, которые можно проводить без потерь на 10 километров. Это важная задача и для обычной электроники, и для медицинских девайсов. Предусиление сигнала позволит сделать все технологии беспроводными и взаимодействовать с устройствами через транзисторные системы.

Перспективы практического применения графена

Сложно сказать, когда графеновую биоэлектронику начнут широко применять на практике. Ученые испытывают нейродевайсы, биосенсоры и другие исследовательские проекты в лабораторных условиях. Чтобы вывести их на уровень медицинского применения, нужно развивать индустрию производства графеновых устройств. Для исследований обычно изготавливают от 10 до 100 аппаратов. Медицинская практика требует гораздо больших масштабов: нужны тысячи и миллионы таких устройств. Сейчас кажется, что перспектива практического применения пока далеко за горизонтом, но через 5–10 лет можно будет сказать нечто более определенное. Исследовательские группы экспериментируют с графеном в разных направлениях, применяют его для решения многих задач. Пока сложно однозначно выделить перспективные подходы, на это нужно время и инвестиции, которые помогут развивать уже имеющиеся исследования.

Почему же графен до сих пор не изменил нашу жизнь?

Во-первых, он все еще очень дорогой. При этом пока нельзя однозначно посчитать, сколько его нужно и для каких целей. Для этого материала нет единой шкалы измерения, так как он может иметь разную структуру — в зависимости от способа получения.

  • 1 грамм чистого графена, который используют в электронике, стоит около $28 млрд.
  • 1 грамм графена, смешанного с пылью — около $1 тыс.

Во-вторых, массовое производство графена пока не налажено, потому что нет технологий, которые бы позволили бы это: например, сложные электронные устройства с графеном делают вручную. Для графена нужна какая-то подложка — например, кварцевая — которая и определяет свойства конечного продукта. При этом пока еще не совсем понятно, какие именно это должны быть свойства.

Свойства графена

Графен — это двумерный материал, аллотропная модификация углерода. В случае графена атомы углерода выстроены в шестигранную структуру и формируют слой толщиной в один атом — это и есть графен. Такую структуру он приобретает за счет sp2-гибридизации. На внешней оболочке атома углерода расположены четыре электрона: при sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. Поэтому из-заsp2-гибридизации графен обладает уникальными электрическими свойствами и прекрасно проводит электрический ток. Графен также имеет впечатляющие механические свойства: он гибкий, тонкий и на 97% прозрачный.

Почему по прошествии почти 20 лет с момента открытия графена он так и не вошёл в нашу жизнь?

Графен — это двумерная разновидность углерода, имеющая необычную структуру в виде соединённых в гексагональную решетку атомов. При этом общая её толщина не превышает размеров каждого из них.

Основные преимущества графена перед другими материалами:

  • Рекордно высокий показатель теплопроводности;
  • Высокие механическая прочность и гибкость материала, в сотни раз превосходящие тот же показатель для стальных изделий;
  • Ни с чем несравнимая электропроводимость;
  • Высокая температура плавления (более 3 тысяч градусов);
  • Непроницаемость и прозрачность.

Помимо замечательных физических свойств графена его также можно использовать в медицине. Последние исследования показывают, что графен способен убивать стволовые раковые клетки — те самые, которые вызывают метастазы…

Так почему же мы ещё не носим графеновую одежду, не пользуемся графеновыми аккумуляторами и не научились лечить онкологию?

На самом деле всё из-за сложности получения графена…

Кстати, графен присутствует в графите, так что если у вас есть дома обычный карандаш — вы можете самостоятельно получить немного графена…

Как получить графен в домашних условиях

  • Сначала нужно подготовить тонкую графитовую пластину, которая затем крепится на клеящейся стороне специальной ленты;
  • После этого она складывается вдвое, а затем снова возвращается в исходное состояние (её концы разводятся);
  • В результате таких манипуляций на клеящей стороне ленты удаётся получить двойной слой графита;
  • Если проделать эту операцию несколько раз, несложно будет добиться малой толщины нанесённого слоя материала;
  • После этого скотч с расщеплёнными и очень тонкими плёнками прикладывается к подложке из окисла кремния;
  • Вследствие этого плёнка частично остаётся на подложке, образуя графеновую прослойку.

Недостатком этого метода является сложность получения достаточно тонкой плёнки заданного размера и формы, которая бы надёжно фиксировались на отведённых для этого частях подложки.

Графеновый прорыв

графен

Однако наука не стоит на месте, и учёные постоянно работают над различными способами получения графена в промышленных масштабах.

На сегодняшний день придумано уже несколько различных видов получения графена в промышленных масштабах. Я не буду их здесь описывать, т.к. эта статья не для физиков, а для того, чтобы вы просто узнали о новом материале, который в ближайшее время станет одним из самых популярных на нашей планете.

Напишу лишь про самые известные способы получения графена:

  • Изготовление разновидности оксида графена в виде хлопьев, применяемой при производстве электропроводящих красок, а также различных сортов композитных материалов;
  • Получение плоского графена G, из которого делаются компоненты электронных устройств;
  • Выращивание материала того же типа, применяемого в качестве неактивных компонентов.

В зависимости от способа получения фрагментов графена, они могут применяться для самых различных целей, а именно:Графен, полученный путём механического отслаивания, в основном, предназначается для исследований, что объясняется невысокой подвижностью носителей свободного заряда;

И напоследок

С помощью искусственного интеллекта и квантовых вычислений открытие новых материалов в течение следующего десятилетия ускорится в геометрической прогрессии.

Экономика инноваций

Семь неожиданных фактов о квантовых компьютерах

При этом персонификация материалов станет обычным делом: будущие имплантаты коленного сустава будут подобраны персонально для точного удовлетворения потребностей каждого организма, как с точки зрения структуры, так и состава.

Наноразмерные материалы, хотя и невидимые невооруженным глазом, будут интегрироваться в нашу повседневную жизнь, плавно улучшая медицину, энергетику, смартфоны и многое другое.

В конечном счете путь к демонетизации и демократизации передовых технологий начинается с изменения материалов — невидимого активатора и катализатора. Наше будущее зависит от материалов, которые мы создаем.

Подписывайтесь на Telegram-канал РБК Тренды и будьте в курсе актуальных тенденций и прогнозов о будущем технологий, эко-номики, образования и инноваций.

Красота не требует жертв

Специалисты Северо-Западного университета (США) превратили чёрный «от природы» графен в суперстойкую краску для волос.

В ходе эксперимента американские учёные покрыли образцы человеческого волоса раствором из листов графена. Так, физикам удалось превратить светлые, платиновые волосы в угольно-чёрные. Новый цвет оставался стойким на протяжении 30 смывов.

Краска на основе графена обладает дополнительными преимуществами, утверждают американские исследователи. Каждый покрытый ею волос подобен маленькому проводу, способному проводить тепло и электричество. Это означает, что волосы, окрашенные графеновой краской, легко рассеивают статическое электричество и решают проблему электризующихся волос.

  • globallookpress.com

Американские учёные также полагают, что их краска абсолютно безвредна.

«Наружный слой ваших волос, или кутикула, выполняет защитную функцию и состоит из тонких клеток наподобие рыбных чешуек. Чтобы приподнять эти чешуйки и позволить молекулам краски быстро проникнуть в волосы, используются аммиак, перекись водорода или органические амины», — сообщил автор исследования Цзясин Хуан.

Из-за подобных манипуляций волосы постепенно истончаются. Проблему позволяет решить краска, которая покрывает волосы, но не проникает в их структуру. Однако такая краска очень быстро смывается. Как утверждают специалисты Северо-Западного университета, их изобретение позволяет справиться с обеими проблемами.

В индустрию моды и красоты графен начал проникать ещё в 2017 году, когда британская компания CuteCircuit представила платье с элементами из этого чудо-материала. Платье Graphene Dress со встроенными светодиодами благодаря графену меняет цвет «в такт» дыханию его обладательницы.

  • Платье на основе графена, Манчестер, 2017 год
  • Reuters

«Материал будущего» выполняет в платье одновременно две задачи: он является датчиком, улавливающим частоту дыхания, а также питает светодиоды, которые и меняют цвет платья. Разработчики умной одежды считают, что графен можно использовать для получения тканей, которые будут радикально менять свой цвет. Презентация Graphene Dress состоялась на родине этого материала — в Манчестере. 

Чистая вода

Шестая цель из обозначенных в SDG значится как «обеспечить доступность и устойчивое управление водой и санитарией для всех». По подсчетам ООН, «дефицит воды затрагивает более 40% мирового населения и, по прогнозам, будет расти».

Фильтры на основе графена вполне могли бы стать решением. Джиро Абрахам из Манчестерского университета помог разработать масштабируемые сита из графенового оксида для фильтрации морской воды. Он утверждает, что «разработанные мембраны полезны не только для опреснения, но и для изменения размера пор в атомных масштабах, позволяющего фильтровать ионы в соответствии с их размерами».

Кроме того, исследователи из Университета Монаш и Университета Кентукки разработали графеновые фильтры, которые могут отфильтровывать что угодно, по размерам превышающее один нанометр. Они говорят, что их фильтры могут быть использованы для фильтрации химических веществ, вирусов или бактерий в жидкостях. Их можно использовать для очистки воды, молочных продуктов или вина или для производства фармацевтических препаратов.

Что такое графен и чем он так уникален?

Углерод — это материал, состоящий из кристаллической решетки, которую образуют шестиугольники атомов. Графен — это один слой решетки толщиной в 1 атом.

Отсюда — его первое уникальное свойство: самый тонкий.

  • Графен в 60 раз тоньше мельчайшего из вирусов.
  • В 3 тыс. раз тоньше бактерии.
  • В 300 тыс. раз тоньше листа бумаги.

Так выглядит структура углерода. Если отделить один из слоев — получим графен

Такую структуру графен приобретает за счет sp2-гибридизации. Дело в том, что на внешней оболочке атома углерода расположены четыре электрона. При sp2-гибридизации три из них вступают в связь с соседними атомами, а четвертый находится в состоянии, которое образовывает энергетические зоны. В результате графен еще и прекрасно проводит электрический ток.

Уникальность графена в том, что он обладает такой же структурой, как и полупроводники, при этом он сам проводит электричество — как проводники. А еще у него высокая подвижность носителей заряда внутри материала. Поэтому графен в фото- и видеотехнике обнаруживает сигналы намного быстрее, чем другие материалы.

Графен обладает хорошей теплопроводностью, гибкостью и упругостью, он на 97% прозрачный. При этом, графен — самый прочный из известных материалов: прочнее стали и алмаза.

Наглядная графика о свойствах графена

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Советчик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: