Дрон для любителя: устройство и принципы программирования

Полетные контроллеры «всё-в-одном» и их функционал

Полетники «Всё-в-одном» («All In One») имеют встроенную плату распределения питания (PDB) и огромные контакты для толстых проводов, идущих от аккумулятора. Термин появился в те времена, когда обычно применялись отдельные PDB со стабилизаторами питания для полетных контроллеров, но сейчас в ПК встраивают очень много компонентов, так что термин теперь значит немного другое.

Одной из первых функций, которую встроили в ПК — это OSD (экранное меню) — Betaflight OSD.

Ещё одна бесценная фишка — датчик тока: с ним гораздо проще оценить степень разряда аккумулятора, и он же отличный инструмент для тестирования. Тут более подробно про его калибровку (англ).

Также часто в ПК встраивают барометр и магнитометр (компас).

Нет «правильного» полётника «все-в-одном», но при желании можно найти плату, в которой есть всё, даже приёмник, видеопередатчик и даже регуляторы.

Первым таким ПК у меня был RacerStar Tattoo F4S, он не очень надежный.

Транзисторы и Н-мост

Но чтобы поочерёдно подавать ток на каждую из фаз и менять их полярность, необходимы транзисторы. Ещё нам нужна передача больших токов, высокая скорость переключения и чёткость открытия/закрытия затворов. В данном случае удобнее управлять затворами по напряжению, а не по току. Поэтому оптимальны полевые (MOSFET) транзисторы. Чаще всего их используют в контроллерах. Очень редко можно встретить комбинированный вариант транзисторов.

Для переключения фаз со сменой их полярностей используют классическую схему Н-моста (H-Bridge) из полевых транзисторов.

Он состоит из трёх пар транзисторов. Каждая из пар подключается к соответствующей фазе обмотки двигателя и обеспечивает подачу тока со значением (+ или –). Транзисторы, отвечающие за включение фазы с положительным значением, называют верхними ключами. С отрицательным — нижними. Для каждого шага открывается пара ключей: верхний одной фазы и нижний соседней фазы. В результате ток проходит от одной фазы к другой и приводит электродвигатель в движение.

Из схемы видно, что мы не можем включить одновременно верхний и нижний ключ у одной и той же фазы: произойдёт короткое замыкание

Поэтому очень важно быстрое переключение верхних и нижних ключей, чтобы в переходных процессах не появилось замыкание. И чем качественнее и быстрее мы обеспечим переключения, тем меньше у нас будет потерь и нагрева/перегрева транзисторов H-моста

Для запуска остаётся обеспечить управление затворами ключей H-моста. Для управления H-мостом нужно:

  1. Считать показания датчиков Холла.
  2. Определить, в каком положении какую пару ключей включать.
  3. Передать сигналы на соответствующие затворы транзисторов.

Размеры моторов

Размер бесколлекторного моторы обычно обозначается 4 цифрами: AABB, где «АА» — это диаметр статора (stator width / stator diameter), а «BB» — высота статора (stator height), оба значения в миллиметрах.

  • Чем «выше» статор, тем больше мощность на больших оборотах
  • Чем «шире» статор, тем больше крутящий момент при низких оборотах

Увеличение диаметра и высоты мотора требует увеличения как обмоток (электромагнитов), так и постоянных магнитов. Разница в том, что при увеличении высоты статора размеры постоянных магнитов увеличиваются сильнее, чем катушки; а при увеличении диаметра статора обмотки увеличиваются сильнее, чем магниты.

Размеры пропеллеров совместимых с мотором определяются диаметром вала. Валы моторов для 3″, 4″, 5″ и 6″ пропов имеют резьбу M5 (т.е. диаметр 5 мм). У современных моторов вал встроен в сам колокол, для более ранних моторов нужно было использовать адаптер (англ).

На 5″ коптерах чаще всего применяются моторы размера 2204, 2205, 2206, 2207, 2305, 2306, 2307, 2407.

Высокий или широкий статор?

У более высокого статора больше «площадь поверхности» (обращенной к магнитам) следовательно через него проходит «больше» магнитных полей. Большая площадь также способствует хорошему охлаждению. Высокие моторы дают большую мощность и имеют высокие обороты.

Чем больше диаметр статора, тем больший объем железа и меди в нём, в результате мы получаем мотор с большим крутящим моментом, а также более эффективный мотор.

Разработка

PDF

  • У модуля есть 1 «основной разъем», где на 12 пинов выведены питание 12В, парочка GPIO, дополнительный UART (вдруг захотите ESP прикрутить), RS-485 и вход/выход для синхронизации устройств;
  • Имеется 5 каналов, все они абсолютно одинаковые. На каждый канал выведена комплементарная пара High result PWM (HRPWM), которая позволяет управлять полумостом. Так же 2 канала АЦП для реализации обратной связи по току и напряжению и вишенка на торте — вход ошибки (fault). Например, у вас КЗ в силовой части, компаратор засек превышение тока и выдал лог. 1 в знак аварии, так вот подача «1» на данный вход прерывает работу устройства;
  • Сигнал ошибки с входа fault поступает в 2 места: на вход BKIN у микроконтроллера и через инвертор на вход логического элемента AND. Вход BKIN тоже является аппаратной защитой и выключит генерацию ШИМ даже если МК завис, но я захотел перестраховаться и добавил еще логику чтобы она точно разорвала подачу сигнала;
  • На модуле в отдельный разъем CWF-4 выведен интерфейс SWD для удобной отладки, а так же на второй разъем выведен UART и питание для подключения дисплея или связи с другими модулями. Сейчас популярны дисплеи Nextion, поэтому разъем под них рассчитан и еще я делаю свою HMI панель с аналогичным способом связи (UART, +5D, GND);
  • Плата содержит PHY для интерфейса RS485 с терминирующим резистором и ESD защитой. Выбор на данный интерфейс пал по причине, что он есть где угодно, ибо является промышленным стандартом. Например, вы захотите объединить свой инвертор напряжения с дизелем и будет удобно отправлять/получать команды. Да и в любом ПЛК так же есть RS485;
  • Еще установил небольшую энергонезависимую память для хранения настроек или еще чего полезного.

Цикл работы

Чтобы привести в движение трёхфазный двигатель, нужно рассмотреть цикл его работы за электрический оборот. Итак, имеем три фазы — A, B, C. Каждая из фаз получает положительную и отрицательную полярности в определённый момент времени. Поочерёдно по шагам пропускается ток от «плюса» одной фазы к «минусу» другой фазы. В итоге получается шесть шагов = три фазы × две полярности.

A+, A–, B+, B–, C+, C–

Рассмотрим эти шесть шагов цикла. Предположим, что положение ротора установлено в точке первого шага, тогда с датчиков Холла мы получим код вида 101, где 1 — фаза А, 0 — фаза B, 1 — фаза С. Определив по коду положение вала, нужно подать ток на соответствующие фазы с заданными полярностями. В результате вал проворачивается, датчики считывают код нового положения вала — и т. д.

В таблице указаны коды датчиков и смена комбинаций фаз для большинства электродвигателей. Для обратного хода колеса (реверса) достаточно перевернуть знаки полярности фаз наоборот. Принцип работы двигателя довольно прост.

Цикл двигателя представлен в gif-анимации.

Стандартные пропеллеры

Стандартные пропеллеры отвечают за направление движения дрона и располагаются в передней части летательного аппарата. Хотя с момента появления беспилотников для изготовления пропеллеров использовались самые разные материалы, сегодня большинство серийных машин получают пропеллеры либо из пластика, либо из композитных материалов (углеволокна).

Инженеры до сих пор работают над наиболее эффективной формой пропеллеров, чтобы обеспечить стабильность полета, хорошее маневрирование и устойчивость летательного аппарата к воздействию ветра или других погодных условий. Пилоту необходимо перед каждым полетом в обязательном порядке проверять состояние пропеллеров, так как малейшее повреждение может вызвать аварию или нестабильный полет. Вот почему рекомендуется всегда иметь с собой во время полетов запасные пропеллеры.

Разновидности беспилотников

Такое понятие как «беспилотники» является довольно обширным. Под этим термином подразумевают не только квадрокоптеры, но еще и некоторые модели самолетов и вертолетов на радиоуправлении. Это понятие можно еще заменить словом «мультикоптеры» к которым относятся все устройства, оснащенные как минимум тремя винтами.

Виды беспилотников:

Трикоптеры. Это летающие конструкции, где на подвижной платформе находятся три несущих пропеллера. Поворачивать дрон можно, меняя угол платформы. Этот вариант достаточно сложный для новичков в управлении, но отличается быстротой и маневренностью.

Квадрокоптеры. Наиболее распространенный вид дронов, который состоит из 4 движков и такого же количества пропеллеров. Они легки в управлении и могут поднимать разные грузы, если оснащены навесным дополнением. Это наиболее оптимальный вариант для новичков

Но чтобы получить летательный аппарат с хорошими характеристиками, важно обратить на то, сколько стоит квадрокоптер. Цены варьируются от 2 до 70 тыс

руб. в зависимости от двигателей, качества сборки, а также наличия дополнительных функций.

Гексакоптеры. В конструкции содержится 6 моторов и 6 пропеллеров. Это оптимальный вариант для фото- и видеосъемки, поскольку конструкция сохраняет стабильность в воздухе даже при ветреной погоде. К тому же данный вид оснащен увеличенной грузоподъемностью.

Октокоптеры. Данный вид, оснащенный сразу 8 винтами, встречается достаточно редко. Вариант относится больше к профессиональным моделям. Отличается конструкция надежностью, способностью поднимать большие грузы и может работать вне зависимости от погодных условий.

Автопилот и автоматизированное управление

Квадрокоптер устроен так, что им необязательно управлять вручную. Он способен летать на автопилоте.

Авторежимы аппарата, и как они работают:

Self-Level Mode (Horizone Mode). Активирует контроллеры стабилизации — гироскоп, акселерометр, — а также лимитатор скорости. Этот режим управления подходит для обучения.

Интересно: компактный Cheerson с вай-фай и камерой — хороший вариант для начинающих.

Attitude Holding Mode. Тут активирована бортовая электроника контроля стабилизации и доступна функция удержания высоты за счет датчика-барометра. В этом режиме дрон держится в воздухе, даже если отпустить рычаг управления на пульте ДУ. Квадрокоптер просто зависнет. Пользователю остается только регулировать горизонтальное смещение летательного аппарата.

Примечание: автопилотирование и функция возврата к исходной точке позволят не потерять дрон.

  • GPS Attitude Holding Mode. За удержание высоты отвечает модуль GPS. Это дает возможность точной привязки дрона к точке координат. Даже при сильном ветре аппарат останется статичным. Такой режим понравится любителям аэросъемки.
  • Stabilize (автостабилизация). Весьма полезная функция для новичков. Поможет отследить и изменить угол наклона, освоить основы управления.

В тему: ТОП-3 лучших производителей дронов — рейтинг производителей квадрокоптеров

https://youtube.com/watch?v=d4P7lUY5JTQ

https://youtube.com/watch?v=iz9IgK3R40c

https://youtube.com/watch?v=yHwE_q_qb7c

RashVinta

RashVinta – программа, которая производит расчет параметров воздушного винта не только для квадрокоптера, но и других летательных аппаратов.

С помощью RashVinta можно делать вычисления с исходными данными, такие как: Мощность двигателя и диаметр винта; Мощность двигателя и частота вращения винта; Диаметр Винта и его шаг.

В первом случае устанавливаем флажок только на параметре “расчет по диаметру винта”. Указываем информацию о размере пропеллера, мощность двигателя, скорость полета – максимальная и средняя. Жмем “Рассчитать” и видим параметры шага и частоту обращения пропеллера.

Во втором случае все отметки снимаются. Далее, как и в первом случае указываем исходную мощность двигателя, также не забываем про частоту вращения винта и скорость летательного аппарата, аналогично первому случаю. Жмем “Рассчитать” и видим все нужные данные по диаметру винта и его шагу.

В третьем случае расчеты производятся на профессиональном уровне. Галочкой отмечаем пункт “указать параметры винта”. Параметры диаметра и шага винта вносим в нужные поля. Жмем “Рассчитать” и видим данные по профилю лопасти винта, его изображение появляется в окне. Можно менять масштаб для его изучения. Все заключения по расчетам сохраняются в виде таблиц в формате date.html, предусмотренном в сборке программы.

В программе есть возможность увидеть профиль лопасти под углом наклона. Для этого отметьте галочкой пункт “Профиль с углом”. И еще можно увидеть точки, который были использованы для расчета – отметьте галочкой пункт “показать расчетные точки”. На принтере данное изображение профиля можно вывести на бумагу в проекции 1:1.

KV

«KV» — это количество оборотов в минуту (RPM) на единицу напряжения (более правильное определение KV, англ).

Это очень важный параметр бесколлекторных моторов, он показывает на сколько увеличатся обороты мотора (RPM) при увеличении напряжения на 1 вольт, при отсутствии нагрузки на валу (без пропа). Например, если подключить мотор 2300 KV к аккумулятору 3S LiPo (12,6 вольт), тогда без пропеллера он будет вращаться со скоростью 28980 оборотов в минуту (2300 * 12,6). Обычно это примерное значение, указываемое производителем.

Как только вы поставите пропеллер, обороты снизятся из-за сопротивления воздуха. Моторы с более высоким KV будут стараться раскрутить проп быстрее, но могут потреблять большой ток. Именно поэтому мы обычно ставим большие пропы на моторы с небольшим KV, а мелкие и легкие пропы отлично подходят для моторов с высоким значением KV.

Если установить очень большой пропеллер на мотор с большим KV, тогда он попробует раскручивать его также быстро, как будто это маленький проп, но для этого требуется гораздо большее усилие. А чтобы получить требуемое усилие, мотор начнет потреблять гораздо больший ток, а следовательно выделять больше тепла. Что ведет к его перегреву, и может повредить мотор. При перегреве мотора изоляция в обмотках сгорает и получается короткое замыкание.

Моторы

Что бы не раздувать статью до уровня многотомного труда, я хочу сразу
опустить упоминание некоторые типов двигателей и нюансы их
использования. Мы будем рассматривать бесколлекторные двигатели с
внешним ротором – они составляют около 95% самолетных электромоторов, а
расчеты редуцированных мотоустановок с двигателями с внутренним ротором
(инраннеры) имеют те же принципы, что и расчеты аутраннеров, лишь с
небольшими нюансами.

В целом, приведенные способы расчета на практике проверенно работают в
диапазоне мотоустановок от 50 до 2500 ватт. Честно признаюсь, расчеты
для микросамолетов весом в 100-150 грамм не всегда совпадали с
практическими замерами (вернее, совпадали, но наилучшие результаты
получались эмпирическим подбором компонентов, иногда в противоречие
расчетам), а расчеты свыше 2,5квт мне не удавалось ни проверить, ни
подтвердить, хотя у меня есть надежда, что они будут тоже верны.

В целом, адресуя статью скорее начинающим строителям и пилотам,
думаю, что их запросы будут удовлетворены диапазоном мощностей в 50-2500
ватт. Итак.

Какие параметры БК мотора нам нужно знать, чтоб подобрать необходимую модель?

Первое – максимально допустимый ток, который мотор в состоянии
безболезненно переварить. Если в процессе работы это значение будет
превышено – мотор попросту сгорит. Если ток в предельных режимах работы
будет существенно ниже – значит мы не до конца «нагружаем» двигатель, и
попросту не используем его потенциальные возможности.

Иногда в описании присутствует параметр «рабочий ток», или «ток
максимального КПД» — это как раз тот диапазон токов, при котором мотор
используется максимально эффективно. Если этот параметр не указан –
значит его значение лежит где-то в районе 80-90% от максимально
допустимого тока в предельных режимах работы.

Сразу отмечу, что в 99% случаев под предельным режимом
подразумевается работа мотоустановки на 100% газа в статическом
состоянии (грубо говоря — на самолете, который стоит на земле и
удерживается руками). Более тяжелого режима для самолета подобрать
сложно — попробуйте свой автомобиль привязать к дереву и попробовать как
следует погазовать, будучи на первой передаче… Неизвестно кто кого
победит, но я уверен, что для мотора и трансмиссии это будет куда более
суровым испытанием, чем езда на максимальной скорости или светофорные
гонки. Слава богу, для самолета с воздушным винтом такое испытание менее
вредно… В любых других условиях – полет на максимальной скорости,
висение и фигуры пилотажа – нагрузка на мотор и протекающие в нем токи
будут ниже. Об этом надо помнить.

Второй параметр – это количество оборотов на вольт, или kV. Оно
обозначает, сколько оборотов в минуту делает вал мотора без нагрузки
(без винта), на каждый вольт поданного на него напряжения
(аккумуляторной батареи). Попросту говоря, если на мотор с kV=1000
подать 7 вольт, то он будет без винта вращаться со скоростью 7000
об/мин. Если подать 11 вольт – то 11000 об/мин.

Внимательный читатель сразу заметит практическую сторону этого
параметра. Действительно, если с мотором с kV = 1000 и аккумулятором
7,4в абстрактный винт заставить вращаться со скоростью 5000 об.мин, то
для мотора с kV=500 для достижения тех же оборотов придеться
использовать аккумулятор в 14,8 вольт. Замечу сразу, что в этом примере
мы не говорили о разнице в токах! Об этом будет ниже, куда более
серьезно…

Третий параметр – внутреннее сопротивление обмоток. Оно сильно влияет
на КПД нашего мотора, и на его токопотребление. Обычная единица
измерения – мОм, но иногда у некоторых производителей и в некотрых
таблицах эту единицу подменяют например кОм-ами или Ом-ами, просто
сдвинув запятую в сторону. Это не должно сильно пугать, достаточно
посмотреть в параметр похожего мотора, что бы понять куда следует
сдвигать запятую в числе, чтоб привести данные к принятому нами
стандарту.

Теперь, как применять имеющиеся параметры. Ставим задачу – вращать
определенный винт с нужными оборотами (т.е. получая необходимую тягу и
скорость потока), не выходя за пределы допустимого для мотора тока, и
обеспечивая нужное время работы мотоустановки (обычно 7-10 минут). Все
это мы должны рассчитать, исходя из возможностей использовать те или
иные аккумулятор (сборку), укладываясь в допустимый вес и бюджет.

Прочие факторы влияющие на летные характеристики

Производители не указывают многие характеристики, но их можно найти, почитав обзоры и тесты.

  • Крутящий момент
  • Время реакции
  • Температура
  • Уровень вибраций и качество балансировки

Крутящий момент

Это сила, которая вращает пропеллер, она определяет скорость, с которой мотор может изменить обороты (RPM)

Другими словами, на сколько просто мотору проворачивать массу ротора, винта и, что более важно, воздуха

Крутящий момент влияет на характеристики коптера, особенно на точность и отзывчивость управления. У мотора с большим крутящим моментом более быстрая реакция, т.к. он может быстрее поменять скорость вращения (RPM). Возможно даже будет меньше проявляться пропвош (propwash — тряска коптера, когда он движется в турбулентном потоке, например при флипах, резких разворотах и т.д.).

Большой крутящий момент позволит использовать более тяжелые винты (ценой увеличения потребляемого тока). Если на мотор с небольшим крутящим моментом поставить слишком тяжелый проп, тогда ему не хватит «сил» вращать его с нормальной скоростью, в результате будет низкая эффективность работы и перегрев мотора.

Недостаток моторов с высоким крутящим моментом — колебания/вибрации. Такой мотор может менять обороты очень быстро, в результате ошибка в PID регуляторе может усиливаться и накапливаться (англ), что вызовет колебания всего коптера, от которых будет сложно избавиться настройкой ПИД коэффициентов, особенно по курсу.

Время реакции

Это время зависит от крутящего момента, чем он выше, тем быстрее реакция. Простой способ измерения — засечь за какое время мотор наберёт макс. обороты.

Время реакции сильно зависит от веса и шага выбранного пропеллера. Помните, атмосфера тут тоже имеет влияние. На уровне моря давление выше, воздух плотнее, т.е. больше молекул воздуха, которые перемещаются винтом для создания тяги. На большой высоте винты будут вращаться быстрее и время реакции на стики будет ниже, но общая тяга тоже снизится (т.к. плотность воздуха ниже).

Температура

Она тоже влияет на моторы, т.к. при большой температуре снижается сила магнитного поля постоянных магнитов ротора, а при очень большой температуре они быстро размагничиваются, что снижает срок службы моторов.

Использование слишком тяжелых пропов и постоянная эксплуатация на больших оборотах может привести к перегреву. Постоянный перегрев ухудшит характеристики магнитов и поэтому конструкция моторов, обеспечивающая хорошее охлаждение, также гарантирует большой срок эксплуатации (конечно если вы не будете падать и ломать моторы).

Уровень вибраций и качество балансировки

Вибрации моторов могут вызвать кучу разных нежелательных побочных эффектов, и скажутся на летных характеристиках коптера.

Если мотор плохо отбалансирован, тогда вибрации могут влиять на PID-контроллер. Такой коптер будет довольно сложно настроить, т.к. частота вибраций зависит от газа.

Плохо отбалансированный мотор генерирует гораздо больше электрического шума, по сравнению с плавно вращающимся. Такие помехи тоже влияют на гироскопы, что снижает возможности коптера ещё больше, а также создают шумы на видео (если FPV оборудование питается от того же аккумулятора, что и моторы, а так бывает в 99% случаев, прим. перев).

Многие пилоты используют демпферы и антивибрационное крепление моторов и полётного контроллера, это позволяет снизить уровень вибраций и дает неплохие результаты.

Помните, что поврежденный, погнутый или несбалансированный пропеллер также создает нежелательные вибрации.

Дополнительные факторы, влияющие на эксплуатационные характеристики мотора

  • KV — 2000
  • Вес — 10 гр.
  • Макс.потребление тока — 5,5 А
  • Сопротивление — 0
  • Макс. вольтаж — 7 В
  • Мощность — 0
  • Вал — 2 мм
  • Длина — 22 мм
  • Диаметр — 18 сс
  • Общая длина — 30 мм
  • Рекомендуемые лопасти — 7″ х 5″
  • Рекомендуемая мощность — 7,4 В
  • Тяга — 130 гр. / 5000 об/мин

Предположим, вы уже определились с размером мотора и уже подобрали несколько моделей, из которых и выбираете. Чтобы выбрать лучший мотор, нужно учитывать следующие факторы:

  • Максимальная тяга
  • Потребление тока
  • Эффективность
  • Вес

Подумайте, что вы хотите в итоге получить и уже на основе этого делайте окончательный выбор.

Вес мотора

Вес мотора очень часто игнорируют неопытные сборщики квадрокоптеров, но это немаловажные фактор. Т.к. моторы устанавливаются по углам рамы, то соответственно они оказывают большое влияние на отзывчивость дрона при управлении. Чем тяжелее мотор тем больше момент инерции квадрокоптера и тем сложнее изменяется угловая скорость в полете.

У самого мотора есть свой момент инерции. И опять, чем тяжелее мотор, тем больше ему самому нужно тяги и времени, чтобы раскрутиться до необходимых оборотов. Все это в итоге выливается в тормознутость аппарата, в его валкость, плохую отзывчивость и не точное управление. Для акробатических полетов и гонок, вес мотора играет одну из ключевых ролей.

Эффективность

Эффективность мотора обычно измеряется в граммах на ват (тяга/мощность)

Важно оценивать эффективность на всем диапазоне газа. Некоторые моторы эффективны при низком газе и теряют эффективность, потребляя излишне много энергии при своих максимальных оборотах

Но неэффективный мотор не только сильно съедает и так ограниченную энергию в полете, тем самым сокращая его продолжительность, он также способствует просадкам напряжения. Неэффективный мотор может либо не выдавать необходимой тяги или потреблять излишний ток.

  • Тяга
  • Время отклика
  • Температура
  • Балансировка и вибрация

Тяга — это на сколько быстро мотор может увеличивать/изменять скорость вращения. Это влияет на точность управления и отзывчивость квадрокоптера во время полета. Большая тяга дает мгновенный отклик, т.к. скорость вращения меняется так же мгновенно. Большая тяга, так же позволяет ставить лопасти побольше (если рама конечно позволяет), правда в ущерб батарее.

Если же ставить тяжелые лопасти на мотор с низкой тягой, то он вообще не будет способен раскрутить их до нужного значения. Но у высокотяговых моторов есть и свой недостаток — это вибрация, которую очень сложно устранить. Из-за повышенной реакции на команды возможны излишние ошибку в управлении и рыскание квадрокоптера

Температура — магниты в мотора быстрее размагничиваются при высоких температурах, отсюда падение характеристик летательного аппарата. Чем холоднее мотор, тем он дольше проживет.

Вибрация — Если мотор плохо сбалансирован или плохого качества сборки, это приведет к повышенной вибрации во время полета. Поврежденные или несбалансированные лопасти так же ведут к излишней вибрации.

Мотор с каким KV мне подойдет?

Обычно у каждого мотора для 5″ винтов есть 2-3 разновидности с разным KV, от 2300 до 2600 kv. С моей точки зрения, отличие только в числе витков статора. Остальное железо должно быть тем же самым.

Ответ на вопрос — это всего лишь личные предпочтения и размер винта. Лично я для фристайла предпочитаю использовать 2300kv-2500kv моторы с 5″ винтами, но знаю несколько серьезных FPV гонщиков, которые выбирают моторы 2600kv для своих коптеров с 5″ винтами. Если вы знаете, что делаете, а потребляемый ток не убьет электронику и аккумуляторы — то можно использовать любые моторы.

Увеличение kv не сделает из вас более быстрого пилота, на некоторых гонках самые быстрые круги были пройдены на моторах с 2300kv. Нужно просто настроить всё правильно, подобрать подходящие винты, удерживать вес коптера на оптимальном значении и т.д.

Второй способ сборки квадрокоптера собственноручно

Неважно, каким способом вы будете собирать свой первый летательный аппарат, одно вам надо запомнить — не жалейте денег на детали, из которых будете собирать дрон. Только в этом случае, с большей долей вероятности, сборка получится качественной и незначительные неточности и погрешности вам будут прощены

При сборке квадрокоптера вторым способом мы рассмотрим пошаговый вариант сборки с использованием Arduino Mega, прошивки Мега-Пират.

Что потребуется для сборки? 5 моторов, включая 1 запасной. Приобретите также два комплекта лопастей — один рабочий, второй для запаса. Напоминаем вам, что там должно быть два обычных винта и два с обратным вращением. Регуляторы скорости. Их должно быть не менее четырех штук и, опять же, как минимум столько же запасных.

Смотрите про коптеры: Маленькие и мини квадрокоптеры с камерой купить Румашинки.рф

Советуем использовать несколько легких и маленьких. Да, дрон будет меньше летать в течение одного жизненного цикла такого мини-аккмулятора, но при этом полет у вас будет более стабильным. Тем более, что процесс замены аккумулятора не займет много времени.

Когда вы убедитесь в том, что все необходимое у вас имеется в наличии, можно смело приступать к сборке. Процесс сборки можно повторить, пользуясь первым методом, который был описан выше. Самое главное, чтобы от каждого конца луча и до центра рамы расстояние было одинаковым

Проследите за тем, чтобы пропеллеры не касались друг друга и, что важно, центральной части рамы, потому что именно там будут размещаться электронные мозги вашего дрона, плюс видеокамера, которую, кстати, можно установить по желанию

https://www.youtube.com/watch?v=SHCS2InPeCs

Если вы вмонтируете ваши датчики в резину или, скажем, в силиконовую массу, то этим самым сила вибрации во время работы пропеллеров будет погашена. В качестве шасси можно сделать и закрепить пенопласт на самых концах лучей. Для более мягкой посадки их можно прорезинить или прикрепить поролон.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Советчик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: