Самый дорогой художник современности дэвид хокни: «я предпочитаю жить в цвете!»

Области применения нейросетей

️ анализ информации: на основании введённых данных, система автоматически строит определённые выводы
️ прогнозирование: например, погоды или биржевых котировок
️ принятие решений: управление техническими системами или финансовые задачи типа одобрения заявки на кредит исходя из данных о клиенте
️ распознавание образов: от узнающих хозяина домашних гаджетов до анализирующих изображения с городских камер полицейских систем

Именно развитие нейросетей, как многие считают, позволит решить задачу создания искусственного интеллекта – машины, способной мыслить самостоятельно, а не по заданной программе. И не только обрабатывать имеющиеся данные, но и создавать нечто новое.

Как вы увидите ниже, вполне возможно, что мы от этого уже не так далеки.

Что еще умеет DALL-E?

Конечно, пока DALL-E кажется просто игрушкой, пусть и с серьезным научным значением. Но у нее большое будущее. Пожалуй, впервые появилась технология, где результаты ограничены не алгоритмом, а лишь нашим воображением.

Фактически создается новый вид программирования, открытый каждому, даже людям без каких-либо технических знаний. В будущем такое программирование будет все более и более распространенным. Пока это лишь предварительные результаты, но они уже поражают.

Например, DALL-E может создавать художественные иллюстрации с очень тонким контролем над их содержимым. Нарисовать можно практически все, смотрите:

Текстовый запрос: капибара на закате.

Текстовый запрос: капибара ночью

Текстовый запрос: капибара в кожаной куртке играет на гитаре

Учитываются нюансы типа отражений и теней, цветов окружения. Нейросеть понимает геометрию, формы и материалы, время года и суток, художественные стили, ракурсы и способы отображения.

Как уже упоминалось, вы можете попробовать все это сами – примеры опубликованы в блоге OpenAI. К сожалению, пока в свободном доступе можно лишь выбирать из фиксированных наборов вариантов заданий, а не вводить произвольный текст, да и результаты не всегда идеальны.

Но даже то, что уже доступно, поражает. Язык пока поддерживается только английский, хотя это вопрос обучающей выборки.

Уже сейчас DALL-E может фактически изобретать новые вещи. Например, в видео выше есть пример с зелеными треугольными часами.

Одним кликом мышки они превращались в пяти- или шестиугольные, причем предлагалось огромное количество вариантов. Можно задать любую задачу и за несколько секунд получить кучу прототипов.

Гостиная с картиной, на которой изображен Сиднейский оперный театр

Текстовый запрос: кожаное кресло в виде пончика

Текстовый запрос: манекен в джинсах и красном поло

Сложно даже представить себе все, что позволит сделать эта нейросеть в недалеком будущем, когда мы сможем получить обученные модели. Пока в тестовом режиме DALL-E пробовали применять для дизайна одежды и интерьеров.

В чем фишка DALL-E?

В текущем состоянии эта нейросеть создает изображения по текстовому описанию. И глядя на примеры работы, просто невозможно осознать, насколько это фундаментальная, сложная, и поразительная задача.

DALL-E получила кучу возможностей: она может визуально представлять текст, создавать антропоморфные версии животных и предметов, обоснованно связывать не имеющие друг к другу отношения предметы, а также трансформировать уже существующие изображения.

Пример работы DALL-E. Запрос – создание неоновой вывески с надписью SkyNet.

Конечно, результаты не идеальны. На картинке выше можно заметить, что на одной картинке вместо SkyNet написано SKJNET.

Но просто взгляните и задумайтесь – самые разнообразные вывески, витрины, двумерные и трехмерные, в разных ракурсах и все достаточно вменяемо выглядит. Поразительно.

Помимо вывесок можно создавать автомобильные номера, пакеты чипсов, сумки, и многое другое – на сайте OpenAI вы легко можете попробовать это сами.

Что такое «нейросеть»

Зачастую нейросеть иллюстрируют именно так. И в этом есть доля правды, ведь данные передаются от одного нейрона к другому по цепочке.

Если не углубляться в математические дебри, нейросеть – это система связанных между собой простых элементов, которые называются искусственные нейроны.

Каждый нейрон преобразует несколько входных фактов в один выходной. К примеру:

1. Есть два факта, один из которых важнее второго.2. Нейрон получает эти два факта, сравнивает и в случае приоритетности одного выдаёт определённый результат.3. Этот результат, в свою очередь, является одним из входных данных для следующего нейрона.

Такой процесс происходит до выдачи окончательного результата обработки данных на выходе системы. Конкретная структура нейросети и ее возможности определяются количеством этих элементов и характером связей между ними.

Наглядная схема обучения нейросети. Взято отсюда.

Сами по себе эти элементы довольно просты, но объединяясь в большие массивы, они способны выполнять достаточно сложные задачи. Именно поэтому нейросети получили такое распространение лишь в последнее время. Раньше для них просто не хватало вычислительной мощности.

Главная особенность нейронных сетей заключается в возможности обучения. По известному набору входных и соответствующих им выходных данных настраиваются параметры – коэффициенты связей между нейронами.

В процессе сеть может определять зависимости между этими данными, а также обобщать их. Поэтому по завершении обучения нейросеть сможет выдавать новые верные результаты для входных данных, которых не было в обучающем наборе, в том числе неполных и искаженных.

Работа нейросети похожа на работу мозга, когда человек приходит к определённому выводу на основании полученной извне информации.

Развитие нейросетей

В начале 2019 года ученые из калифорнийской компании Open AI создали основанную на машинном обучении технологию, способную работать с естественными языками: отвечать на вопросы, завершать неполный текст, анализировать его содержание, делать выводы и выполнять многие другие задачи.

Эта нейросеть получила название GPT-2. В основе ее лежала идея о том, что все перечисленные задачи можно сформулировать в виде различных вариантов дополнения текста, где нам требовалось только предоставить системе неоконченный текстовый фрагмент, а она его дописывала.

В июне 2020 года появилась нейросеть GPT-3 – дальнейшее развитие этой идеи. Она достигла, казалось бы, совершенно невероятных результатов. Например, по текстовым описаниям могла создавать элементы веб-сайтов.

Но кто сказал, что нейросети могут работать только с текстовой информацией?

Спустя несколько месяцев у исследователей возникла идея о том, что, если мы можем дополнять текстовые предложения, почему бы не попробовать завершать изображения. Этот проект получил название Image GPT. Идея в его основе также была простой: мы даем системе неполное изображение и хотим, чтобы она дополнила отсутствующие пиксели.

Пример работы нейросети Image GPT.

Например, она смогла определить, что кот на картинке скорее держит бумагу и дополнила изображение. А если на картинке изображена капля и часть кругов на воде, то нужно завершить их и добавить брызги.

Но на этом тоже не остановились: в январе 2021 года, спустя всего 7 месяцев после разработки GPT-3, компания представила свою новую сногсшибательную технологию, которой удалось построить связь между текстом и изображениями.

Эту нейросеть назвали DALL-E.

Но если завершение изображений уже работает, что нового она может сделать? На самом деле, как вы увидите ниже, было бы правильнее задать вопрос «а чего она сделать НЕ может?»

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Советчик
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: