Щель расширяется
В начале XXI была поставлена целая череда экспериментов, демонстрирующих, что двухщелевой эксперимент можно проводить не только с элементарными частицами, но и с атомами, молекулами, крупными молекулами, огромными молекулами и, возможно, даже с вирусами.
Подобные эксперименты гораздо сложнее экспериментов над электронами, как с физической, так и с технологической точки зрения. Создать пучок электронов и пропускать их через две щели можно при помощи электронных пушек, расположенных в вакуумированной камере. С молекулами, особенно крупными, приходится учитывать гораздо больше факторов: вес, форму, ориентацию молекул, а также силу химических связей между атомами в них. Для максимального упрощения этих факторов в одном из первых опытов, призванных исследовать квантовые эффекты на примере больших молекул, использовались фуллерены.
У меня в блоге я уже упоминал новейшие исследования, связанные с фуллеренами; напомню, что фуллерены – это крупные неорганические молекулы, состоящие из атомов углерода. Фуллерен C60 напоминает по форме футбольный мяч, а фуллерен C70 – мяч для регби. В описываемом опыте, поставленном в 1999 году, фуллерены доводили до газообразного состояния, нагревая в керамической печи до температуры 900 K, а затем с силой выдувая через щель в ее корпусе. Действительно, в таком опыте фуллерены демонстрируют интерференционный паттерн, характерный для двухщелевого эксперимента:
В данном случае фуллерены проходили через детектор со скоростью около 200 м/c.
В 2019 году в Венском университете группа под руководством Армина Шайеги успешно провела двухщелевой опыт с молекулой грамицидина, состоящей из 15 аминокислот. Длина волны в таком эксперименте тем меньше, чем больше размер молекулы, поэтому детектор должен быть особенно чувствительным. Кроме того, приходится иметь дело с хрупкостью органических молекул, о которой я писал выше. Для проведения опыта Шайеги с коллегами покрыли тонким слоем грамицидина край вращающегося угольного колесика. Затем этот край бомбардировали лазерными импульсами длительностью по несколько фемтосекунд каждый, отщепляя таким образом молекулы грамицидина и по возможности не повреждая их. После этого отдельные молекулы грамицидина подхватывались струей аргона, гнавшей их в детектор со скоростью 600 м/с. Действительно, в данном эксперименте грамицидин продемонстрировал длину волны в 350 фемтометров.
В сентябре 2019 году там же, в Венском университете, был поставлен еще более амбициозный опыт под руководством Маркуса Арндта. В ходе этого опыта удалось наблюдать волновые квантовые свойства у молекулы размером 2000 атомов, формула которой C707H260F908N16S53Zn4.
Эти молекулы направляли в детектор, пропуская их через пятиметровую вакуумную трубку. Чтобы они случайно ни с чем не провзаимодействовали, для движения молекул выделили узкий «коридор», а саму трубку защитили от малейших колебаний при помощи системы пружин и амортизаторов. Такая молекула настолько огромна по сравнению с фуллереном и даже с элементарной частицей, что напрашиваются теории, предполагающие, что граница между микро- и макромиром вообще отсутствует, и макроскопические объекты также могут находиться в квантовой суперпозиции, правда, в течение исчезающе малых промежутков времени. В статье об этом эксперименте упоминается теория непрерывной спонтанной локализации (CSL), в соответствии с которой в уравнение Шрёдингера вводится стохастический нелинейный член, фактически разрушающий макроскопические суперпозиции с течением времени.
Электрон и Вселенная
Через сотую долю секунды после Большого взрыва Вселенная состояла из смеси электронов, позитронов, нейтрино, фотонов, протонов и нейтронов. На каждые протон и нейтрон приходилось примерно по миллиарду электронов, позитронов, нейтрино и фотонов. Примерно через 14 секунд после Большого взрыва, когда температура Вселенной снизилась до 3 млрд градусов, почти все электроны аннигилировали с позитронами.
Известно, что из каждых 100 нуклонов во Вселенной 87 являются протонами и 13 — нейтронами (последние в основном входят в состав ядер гелия). Для обеспечения общей нейтральности вещества число протонов и электронов должно быть одинаково. Плотность барионной (наблюдаемой оптическими методами) массы, которая состоит в основном из нуклонов, достаточно хорошо известна (один нуклон на 0,4 кубического метра). С учётом радиуса наблюдаемой Вселенной (13,7 млрд световых лет) можно подсчитать, что число электронов в этом объёме составляет ~1080, что сопоставимо с большими числами Дирака.
Электрический заряд электрона, постоянная Планка и скорость света определяют постоянную тонкой структуры, определяющую интенсивность электромагнитных взаимодействий:
- α=e2ℏc≈1137{\displaystyle \alpha ={\frac {e^{2}}{\hbar c}}\approx {\frac {1}{137}}}.
Масса электрона, электрический заряд электрона и постоянная Планка определяют характерный размер атомов (боровский радиус):
- r=ℏ2me2≈,5⋅10−8{\displaystyle r={\frac {\hbar ^{2}}{me^{2}}}\approx 0{,}5\cdot 10^{-8}} см.
Радиоизлучение радиогалактик и пульсаров объясняется синхротронным излучением электронов в магнитных полях около этих объектов. Доля электронов с энергией, превышающей 1 ГэВ, в первичных космических лучах составляет около 1 % от общего потока.
Давление вырожденного электронного газа играет важную роль на заключительном этапе эволюции звёзд. Звёзды с массой меньше чандрасекаровского предела после охлаждения стабилизируются давлением вырожденного электронного газа и превращаются в белые карлики. В звёздах с большей массой атомные ядра захватывают электроны и распадаются на нейтроны (нейтронная звезда). Ядерные реакции с участием электронов и позитронов играют важную роль при взрывах сверхновых звёзд.
С электроном связаны несколько физических величин, имеющих размерность длины:
- комптоновская длина волны электрона λ=2πℏmc≈2,4⋅10−10{\displaystyle \lambda ={\frac {2\pi \hbar }{mc}}\approx 2{,}4\cdot 10^{-10}} см;
- классический радиус электрона r=e2mc2≈2,8⋅10−13{\displaystyle r={\frac {e^{2}}{mc^{2}}}\approx 2{,}8\cdot 10^{-13}} см;
- гравитационный радиус электрона r=2Gmc2≈1,35⋅10−55{\displaystyle r={\frac {2Gm}{c^{2}}}\approx 1{,}35\cdot 10^{-55}} см.
Все электроны во Вселенной абсолютно одинаковы по своим свойствам. Если обозначить величину электрического заряда электрона как e{\displaystyle e}, то электрические заряды всех известных элементарных частиц, за исключением кварков, равны ±e,{\displaystyle \pm e,0}, а электрические заряды кварков равны ±13e,±23e{\displaystyle \pm {\frac {1}{3}}e,\pm {\frac {2}{3}}e}. Масса электрона резко выделяется в распределении известных элементарных частиц по массам. Классический радиус электрона почти равен радиусу действия ядерных сил. Можно ли вывести величину электрического заряда электрона из других мировых констант (скорости света, постоянной Планка, гравитационной постоянной)? Имеет ли смысл вопрос о размере электрона? Зависит ли размер электрона от условий опытов? Ответы на эти вопросы пока неизвестны (см. Нерешённые проблемы современной физики).
Если бы масса электрона превышала разность масс нейтрона и протона, то химический состав Вселенной изменился бы коренным образом. В ней отсутствовал бы водород, а следовательно, звёзды в их обычном понимании, жизнь и разум. Поэтому, возможно, малая масса электрона обусловлена антропным принципом.
Если бы электрон имел целый спин, то принцип Паули бы для него не выполнялся. Как следствие, во всех атомах , и все атомы были бы химически инертны. Во Вселенной отсутствовали бы молекулы, химические соединения и жизнь, подобная нашей.[источник не указан 1081 день]
Использование
Эксперименты с трубкой Крукса впервые продемонстрировали природу электронов
В большинстве источников низкоэнергетичных электронов используются явления термоэлектронной эмиссии и фотоэлектронной эмиссии. Высокоэнергетичные, с энергией от нескольких кэВ до нескольких МэВ, электроны излучаются в процессах бета-распада и внутренней конверсии радиоактивных ядер. Электроны, излучаемые в бета-распаде, иногда называют бета-частицами или бета-лучами. Источниками электронов с более высокой энергией служат ускорители.
Движение электронов в металлах и полупроводниках позволяет легко переносить энергию и управлять ею. Это явление (электрический ток) является одной из основ современной цивилизации и используется практически повсеместно в промышленности, связи, информатике, электронике, в быту. Скорость дрейфа электронов в проводниках крайне мала (~0,1—1 мм/с), однако электрическое поле распространяется со скоростью света. В связи с этим ток во всей цепи устанавливается практически мгновенно.
Пучки электронов, ускоренные до больших энергий, например, в линейных ускорителях, являются одним из основных средств изучения строения атомных ядер и природы элементарных частиц. Более прозаическим применением электронных лучей являются телевизоры и мониторы с электронно-лучевыми трубками (ЭЛТ) — кинескопами. Электронный микроскоп также использует способность электронных пучков подчиняться законам электронной оптики. Ещё ускоренные электронные лучи применяются для создания рентгеновского излучения: при попадании электронного пучка в металлическую мишень происходит рассеяние электронов на электростатическом поле атомных ядер и электронов и генерация тормозного излучения. До изобретения транзисторов практически вся радиотехника и электроника были основаны на вакуумных электронных лампах, где применяется управление движением электронов в вакууме электрическими (иногда и магнитными) полями. Электровакуумные приборы (ЭВП) продолжают ограниченно использоваться и в наше время. Наиболее распространённые применения — магнетроны в генераторах микроволновых печей и вышеупомянутые электронно-лучевые трубки в телевизорах и мониторах.
Электронные пучки используются в устройствах для очистки дымовых газов и в буровых установках для бурения скальных пород.
Орбиталь
Для описания атомных и молекулярных многоэлектронных систем вместо точного решения уравнения Шрёдингера приходится обращаться к тем или иным приближениям, одним из которых является одноэлектронное, также называемое орбитальным. В его основе лежит представление о существовании индивидуальных состояний каждого электрона, которые представляют собой стационарные состояния движения электрона в некотором эффективном поле, создаваемом ядром (или ядрами) и всеми остальными электронами. Эти стационарные состояния описываются соответствующими одноэлектронными функциями — орбиталями.
Примечания
- ↑
- ↑
- Также то же, что и электрум: «янтарного цвета сплав золота (80 %) с серебром (20 %)» (Черных П. Я. Историко-этимологический словарь).
- Ельяшевич М. А. // Физическая энциклопедия : / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 146—151. — 707 с. — 100 000 экз.
- Единица заряда СГСЭ (франклин или статкулон) определена как 110⋅c{\displaystyle {\frac {1}{10\cdot c}}} Кл = (2 997 924 580)−1 Кл (точно), где c — числовое значение скорости света в вакууме в единицах СИ (м/с), по определению равное 2 997 924 580. Единица заряда СГСМ, которую иногда называют абкулон, определена как 10 Кл. Поэтому элементарный заряд, выраженный в единицах заряда СГСЭ и СГСМ, также имеет точное значение.
- Наумов А. И. Физика атомного ядра и элементарных частиц. — М.: Просвещение, 1984. — С. 82. — 30 000 экз.
- ↑
- ↑
- Смондырев М. А. Квантовая электродинамика на малых расстояниях // Природа. — Наука, 1980. — № 9. — С. 74—77.
- , с. 67.
- По предложению Карла Андерсона, открывшего позитрон в 1932 году.
- Из статьи Skibo J. G., Ramaty R. Primary and Secondary Cosmic Ray Positrons and Electrons // 23rd International Cosmic Ray Conference. — 1993. — Vol. 2. — P. 132—135. — .: «Hereafter, the term electron will refer to positrons and negatrons».
- Мотт Н., Снеддон И. Волновая механика и её применения. — М.: Наука, 1966. — С. 30. — 9400 экз.
- Спроул Р. Современная физика. — М.: Наука, 1974. — С. 18. — 34 000 экз.
- Быков Г. В. К истории открытия электрона // Вопросы истории естествознания и техники. — 1963. — Вып. 15. — С. 25—29.
- Thomson G. P. The Septuagenarian Electron (англ.) // Phys. Today. — 1967. — Vol. 20, iss. 5. — P. 55.; Пер. с англ.:
- Робертсон Б. Современная физика в прикладных науках. — М., Мир, 1985. — с. 25
- Киттель Ч. Квантовая теория твердых тел. — М.—Л.: Наука, 1967. — С. 103.
- Давыдов А. С. Теория твердого тела. — М.: Мир, 1979. — С. 122.
- Вайнберг С. Первые три минуты. — М.: Эксмо, 2011. — 208 с. — ISBN 978-5-699-46169-1.
- Смородинский Я. А. Законы и парадоксы элементарных частиц // Физика наших дней. Сборник. — М.: Знание, 1972. — С. 90—91.
- Дорман Л. И. Экспериментальные и теоретические основы астрофизики космических лучей. — М.: Наука, 1975. — 464 с.
- , с. 552.
- , с. 558.
- Щёлкин К. И. Физика микромира. — М.: Атомиздат, 1965. — 230 с.
- Розенталь И. Л., Архангельская И. В. Геометрия, динамика, Вселенная. — М.: Едиториал УРСС, 2003. — С. 175. — ISBN 5-354-00413-6.
- Вайскопф В. Физика в двадцатом столетии. — М.: Атомиздат, 1977. — С. 103.
- Бор Н. Дискуссии с Эйнштейном о проблемах теории познания в атомной физике // Атомная физика и человеческое познание. — М.: ИЛ, 1961. — С. 92.
- Розенфельд Л. Квантовая электродинамика // Нильс Бор и развитие физики. — М.: ИЛ, 1958. — С. 115.
- Иваненко Д. Д. Элементарные частицы // Очерки развития основных физических идей. — М.: АН СССР, 1959. — С. 427. — 5000 экз.
- Пономарев Л. И. По ту сторону кванта. — М.: Молодая гвардия, 1971. — С. 43.
- Новиков И. Д. Как взорвалась Вселенная. — М.: Наука, 1988. — 141 с. — ISBN 5-02-013881-9.
- , с. 65.
Эксперимент с двумя щелями
В начале XIX века в научном сообществе, представители которого мыслили в духе детерминизма классической физики, всерьез встал вопрос о том, что представляет собой свет: частицы или волны. Ньютон считал, что свет состоит из мельчайших частиц, «корпускул», что и позволяет объяснить его преломление. С другой стороны, теория Гука-Гюйгенса приводит к выводу, что свет проявляет волновые свойства. Ключевым экспериментом, призванным конкретизировать природу света, стал опыт с двумя щелями, поставленный Томасом Юнгом в 1801 году. Именно Томас Юнг, опираясь на феномен интерференции волн, окончательно сформулировал волновую теорию света, которую проиллюстрировал при помощи своего знаменитого эксперимента:
Свет последовательно пропускается через два барьера, в первом из которых прорезана одна щель, а во втором — две. Если бы свет состоял из частиц-корпускул, то на экране, расположенном за вторым барьером, образовывалось бы две освещенные полосы, по одной напротив каждой из щелей. На самом же деле на экране образуется интерференционный узор, свидетельствующий, что свет распространяется по принципу волны. В 1818 году на основании этих данных Французская Академия выступила с вопросом о том, сможет ли кто-нибудь непротиворечиво объяснить природу света. В результате опытов Жака Френеля и Симеона Дени Пуассона на оставшуюся часть XIX века установилось представление о волновой природе света, которое было вновь оспорено только в 1900 году, когда Планк предложил вышеупомянутую концепцию «кванта». Промежуточным итогом, позволившим вписать физические свойства света в квантовую механику, стала теория корпускулярно-волнового дуализма, сформулированная Луи де Бройлем в 1924 году. Согласно этой теории, свет одновременно проявляет свойства волны и потока частиц.
На фоне такого развития событий в 1927 году Клинтон Дэвиссон и Лестер Джермер повторили эксперимент с двумя щелями на электронах, чтобы показать их дифракцию. Длина волны электрона зависит от энергии частицы, и оказалось, что электрон с энергией 100 эВ (электрон-вольт) имеет длину волны 0,1 нм, что весьма сопоставимо с расстоянием между атомами в кристаллической решетке. Поскольку к тому времени уже удалось получить дифракцию рентгеновских лучей в кристаллической решетке, дифракция электронов также дала ожидаемый результат: два пучка электронов, пропускаемых через две щели, оставляли на экране такие следы, которые должны оставаться от двух волн.
Именно тогда в полной мере началась эпоха квантовых парадоксов, на протяжении которой довелось узнать, что на микроуровне мир устроен существенно иначе, нежели на макроуровне, устроен абсурдно и контринтуитивно. Так, был обнаружен квантовый туннельный эффект, при котором квантовая частица с некоторой вероятностью может преодолеть барьер, непроницаемый для классической частицы. Была выявлена зависимость результата опыта от акта измерения, наиболее ярко представленная в виде мысленного эксперимента под названием «кот Шрёдингера» (а также его усложненного варианта под названием «друг Вигнера»):
Не вдаваясь в подробное описание этих экспериментов, отмечу: характер течения квантовых экспериментов ключевым образом зависит от присутствия или отсутствия наблюдателя. Так, в вышеупомянутой постановке двухщелевого эксперимента с электронами интерференционная картина сохраняется, только когда за ходом эксперимента никто не смотрит. Если эксперимент пронаблюдать, то происходит коллапс волновой функции частицы, и поток электронов разделяется надвое. Электроны начинают вести себя как корпускулы и оставлять на экране не интерференционный узор, а две полосы напротив двух щелей. Данное явление называется «декогеренцией». По какой-то причине поток частиц теряет квантовую согласованность и перестает вести себя как единая волна.
При этом в 1949 году советским ученым Биберману, Сушкину и Фабриканту удалось продемонстрировать, что дифракционные свойства присущи не только потоку электронов, но и отдельному электрону, проходящему через детектор. Буквально в процессе подготовки этой публикации, 20 августа 2021 года, появилась новость об экспериментальном подтверждении корпускулярно-волнового дуализма у одиночного фотона. Дифракцию одиночного фотона выполнила команда во главе с Тай Хён Юн из Южнокорейского института фундаментальных наук. Таким образом, квантовой механике подчиняются мельчайшие частицы наблюдаемого мира… а вот каковы самые крупные объекты, которые также ей подчиняются?
Свойства
Заряд электрона был непосредственно измерен в экспериментах А. Ф. Иоффе () и Р. Милликена (). Настоящее значение заряда электрона определятся точно как −1,602176634⋅10−19Кл, или −4,803204712570263⋅10−10ед. заряда СГСЭ (точно) в системе СГСЭ, или −1,602176634⋅10−20 ед. СГСМ (точно) в системе СГСМ. В 2019 году основные единицы СИ были привязаны к фундаментальным константам; в частности, кулон привязан к элементарному электрическому заряду, поэтому численное значение заряда электрона по определению имеет абсолютную точность и указывается без погрешности. Заряд электрона, взятый по абсолютной величине, служит единицей измерения электрического заряда других элементарных частиц.
- me=9,1093837015(28)⋅10−31{\displaystyle {m_{\mathrm {e} }}=9{,}1093837015(28)\cdot 10^{-31}} кг — масса электрона.
- e=−1,602176634⋅10−19{\displaystyle {e_{0}}=-1{,}602176634\cdot 10^{-19}} Кл — заряд электрона.
- eme=−1,75882001076(53)⋅1011{\displaystyle {\frac {e_{0}}{m_{\mathrm {e} }}}=-1{,}75882001076(53)\cdot 10^{11}} Кл/кг — удельный заряд электрона.
- s=12{\displaystyle s={\frac {1}{2}}} — спин электрона в единицах ℏ.{\displaystyle \hbar .}
В отличие от большинства других известных науке частиц, электрон стабилен (более точно, в пределах чувствительности эксперимента его время жизни не менее 6,6⋅1028 лет с 90%-й доверительной вероятностью). Распад свободного электрона на нейтрино и фотоны запрещён законом сохранения электрического заряда, а распаду на другие элементарные частицы препятствует закон сохранения энергии.
Современная наука рассматривает электрон как фундаментальную элементарную частицу, не обладающую внутренней структурой и размерами.
Как и любая заряженная частица со спином, электрон обладает магнитным моментом, причём магнитный момент делится на нормальную часть и аномальный магнитный момент (добавка примерно 0,116 %). Магнитный момент электрона μe = -9,2847647043(28)⋅10−24 Дж/Тл. За эксперименты по сверхточному определению магнитного момента электрона Г. Демельту и В. Паулю была присуждена Нобелевская премия по физике 1989 года. Измерения магнитного момента электрона с точностью до 13 знаков после запятой показали, что размеры электрона не превышают 10−20 см. Проведённые ранее эксперименты по столкновению электронов высоких энергий давали значительно более грубое ограничение на размеры электрона: 10−17 см.
Внутренняя чётность электрона равна +1. Электрон участвует в слабом, электромагнитном и гравитационном взаимодействиях. Примерами участия электрона в слабых взаимодействиях являются бета-распад и электронный захват. Он принадлежит к группе лептонов и является (вместе со своей античастицей, позитроном) легчайшим из заряженных лептонов и легчайшей элементарной частицей, имеющей электрический заряд. До открытия массы нейтрино электрон считался наиболее лёгкой из массивных частиц — его масса примерно в 1836 раз меньше массы протона. Спин электрона равен 1⁄2, и, таким образом, электрон относится к фермионам.
Иногда к электронам относят как собственно электроны, так и позитроны (например, рассматривая их как общее электрон-позитронное поле, решение уравнения Дирака), особенно в тех задачах, когда их общие свойства более существенны, чем различия. При таком выборе терминов отрицательно заряженный электрон называют негатроном, положительно заряженный — позитроном.
Находясь в периодическом потенциале кристалла, электрон рассматривается как квазичастица, эффективная масса которой может значительно отличаться от массы электрона в вакууме.
Свободный электрон не может поглотить фотон, хотя и может рассеять его (см. эффект Комптона).
Благодаря своей малой массе электроны вследствие туннельного эффекта с лёгкостью проникают через потенциальные барьеры высотой в несколько электрон-вольт и толщиной примерно до десятка атомных диаметров. Явлением туннельного эффекта для электронов объясняется то, что электрический ток может протекать между металлическим электродом и ионами раствора или между двумя металлами, находящимися в контакте, несмотря на то, что поверхность металла обычно покрыта слоями окисла или загрязнена.
Отношение электрического заряда к массе для электрона во много раз превышает аналогичное отношение для любой другой элементарной частицы или системы частиц. Электроны можно получать из твёрдых тел относительно легко по сравнению с любыми другими частицами. Эти два обстоятельства лежат в основе многочисленных применений электронов в электровакуумных приборах.
Этимология и история открытия
Краткий обзор различных семейств элементарных и составных частиц и теории, описывающие их взаимодействия. Элементарные частицы слева — фермионы, справа — бозоны. (Термины — гиперссылки на статьи ВП)
Название «электрон» происходит от греческого слова ἤλεκτρον, означающего «янтарь»: ещё в древней Греции естествоиспытателями проводились эксперименты — куски янтаря тёрли шерстью, после чего те начинали притягивать к себе мелкие предметы. Термин «электрон» как название фундаментальной неделимой единицы заряда в электрохимии был предложенДж. Дж. Стоуни в 1894 году (сама единица была введена им в 1874 году). Открытие электрона как частицы принадлежит Э. Вихерту и Дж. Дж. Томсону, которые в 1897 году установили, что отношение заряда к массе для катодных лучей не зависит от материала источника.
Согласно гипотезе де Бройля (), электрон (как и все другие материальные микрообъекты) обладает не только корпускулярными, но и волновыми свойствами. Де-бройлевская длина волны электрона равна λ=hp{\displaystyle \lambda ={\frac {h}{p}}}, где h{\displaystyle h} — постоянная Планка, p{\displaystyle p} — импульс электрона. В нерелятивистском случае v≪c{\displaystyle v\ll c} она равна λ=hmev{\displaystyle \lambda ={\frac {h}{m_{\mathrm {e} }v}}}, где v{\displaystyle v} — скорость движения электрона, me{\displaystyle m_{\mathrm {e} }} — масса электрона. В ультрарелятивистском случае v→c,E≫mec2{\displaystyle v\rightarrow c,E\gg m_{\mathrm {e} }c^{2}} она равна λ=hcE{\displaystyle \lambda ={\frac {hc}{E}}}, где c{\displaystyle c} — скорость света, E{\displaystyle E} — энергия электрона.
В соответствии с этим электроны, подобно свету, могут испытывать интерференцию и дифракцию. Волновые свойства электронов были экспериментально обнаружены в 1927 году американскими физиками К. Дэвиссоном и Л. Джермером (Опыт Дэвиссона — Джермера) и независимо английским физиком Дж. П. Томсоном.
Открытие электрона и возможностей его применения в разнообразных технических устройствах привело к возникновению большого числа новых понятий современной физики.
Три царства элементарных частиц
Исследователи также отмечают, что фермионы – это антисоциальные члены мира частиц, так как никогда не занимают одно и то же квантовое состояние. Из-за этого электроны, которые относятся к классу фермионов, попадают в различные атомные оболочки вокруг самого атома. Из этого простого явления возникает большая часть пространства в атоме – удивительное разнообразие периодической системы и вся химия.
Бозоны, с другой стороны, являются стадными частицами, обладающими счастливой способностью объединяться и разделять одно и то же квантовое состояние. Таким образом, фотоны, которые относятся к классу бозонов, могут проходить друг через друга, позволяя световым лучам беспрепятственно перемещаться, а не рассеиваться.
Бозон Хиггса – это событие, вытекающие из столкновений между протонами в Большом адронном коллайдере CERN. При столкновении в центре частица распадается на два фотона (пунктирные желтые и зеленые линии)
Но что произойдет, если закольцевать одну квантовую частицу вокруг другой? Вернется ли она в исходное квантовое состояние? Чтобы понять произойдет это или нет, необходимо углубиться в краткий курс топологии – математического изучения форм. Считается, что две формы топологически эквивалентны, если одна может быть преобразована в другую без каких-либо дополнительных действий (склеивания или разделения). Пончик и кофейная кружка, как гласит старая поговорка, топологически эквивалентны, потому что одно может быть плавно и непрерывно сформировано в другое.
Рассмотрим петлю, которую мы сделали, когда вращали одну частицу вокруг другой. В трех измерениях эту петлю можно сжать до точки. Топологически это выглядит так, как если бы частица вообще не двигалась. Однако в двух измерениях петля не может сжиматься, она застревает на другой частице. Это означает, что сжать петлю в процессе не получится. Из-за этого ограничения — обнаруженного только в двух измерениях – петля одной частицы вокруг другой не эквивалентна пребыванию частицы в том же самом месте. Да, голова идет кругом. Вот почему физикам понадобился третий класс частиц – энионы. Их волновые функции не ограничены двумя решениями, определяющими фермионы и бозоны и эти частицы не являются ни тем ни другим.
Исследователи построили в лаборатории маленький адронный коллайдер чтобы доказать существование энионов.
В начале 1980-х годов физики впервые использовали эти условия для наблюдения «дробного квантового эффекта Холла», при котором электроны собираются вместе, чтобы создать так называемые квазичастицы, имеющие долю заряда одного электрона. В 1984 году в основополагающей двухстраничной работе Фрэнка Вильчека, Даниэля Ароваса и Джона Роберта Шриффера было показано, что эти квазичастицы могут быть любыми. Но ученые никогда не наблюдали подобного поведения квазичастиц, а значит не могли доказать, что анионы не похожи ни на фермионы, ни на бозоны.
Вот почему новое исследование революционно – физика наконец удалось доказать, что энионы ведут себя как нечто среднее между поведением бозонов и фермионов. Интересно и то, что в 2016 году три физика описали экспериментальную установку, напоминающую крошечный адронный коллайдер в двух измерениях. Фев и его коллеги построили нечто подобное чтобы измерить флуктуации токов в коллайдере.
Им удалось показать, что поведение энионов в точности соответствует теоретическим предсказаниям. В общем и целом авторы научной работы надеятся, что запутанные энионы смогут сыграть важную роль в создании квантовых компьютеров. Подробнее о том, что такое квантовый компьютер и как он работает, читайте в материале моего коллеги Рамиса Ганиева.
Вирус Шрёдингера
Итак, переходим к самому интересному. Квантовые эффекты в живой природе объективно реальны, например, именно на них основан фотосинтез. Но можно ли поместить живое существо в квантовую суперпозицию, то есть, провести его одновременно через две щели или воспроизвести эксперимент с котом Шрёдингера, но с участием вируса?
В 2009 году группа О. Ромеро-Изарта из Инсбрукского университета предложила осуществить оптическую левитацию вируса, так, чтобы вирус парил в вакуумной полости, а затем добиться запутанности вируса с квантовым состоянием микроскопического объекта, например, фотона.
Ромеро-Изарт указывает, что подобный опыт возможен в реальности, а не только в качестве мысленного эксперимента, поскольку (1) уже осуществлен оптический захват микроорганизмов в жидкости, (2) некоторые микроорганизмы вполне выживают в вакууме, (3) размер вирусов и некоторых других мельчайших организмов сравним с длиной волны лазера, (4) некоторые микроорганизмы прозрачны и, следовательно, проницаемы для фотонов. По мнению Ромеро-Изарта, для квантовой суперпозиции хорошо подошел бы продолговатый вирус табачной мозаики, поскольку ширина его составляет всего 50 нм, а длина — 1 µm.
Насколько я смог выяснить, на данный момент квантовая суперпозиция вируса еще не получена, но в заключение этой статьи хотелось упомянуть о фантастическом рассказе Грега Бира, который называется «Чума Шрёдингера». Фабула рассказа такова: теоретически смертельно опасный вирус можно поместить в квантовое состояние, в котором он либо заразил, либо не заразил человека. Тогда волновая функция вируса, запутанного с радиоактивным ядром, схлопнется в момент распада этого ядра – и из-за этого единичного квантового события человечество может быть поставлено на грань вымирания. С другой стороны, если квантовая функция действительно схлопывается в результате сознательного наблюдения, то заражение таким вирусом ни в коем случае нельзя диагностировать. Если смертельный квантовый вирус есть у нас в организме, то он подействует на нас, только когда врач узнает результаты анализа, либо как только мы сами ощутим у себя симптомы этого вируса. Таким образом, эксперимент с котом Шрёдингера может быть перенесен сразу на все человечество.
Надеюсь, что этот пример достаточно парадоксален и реалистичен, чтобы мы сначала попытались разобраться, как соотносится квантовая механика и мозг (оригинал на сайте Nautil.us), и только после этого пытались экспериментировать с реальной суперпозицией живых организмов.